
Taking stock: what made a maker business
2019

A talk about the *spark d-fuser, which retailed on sparklive.net and has a project page with diary posts here.

Kickstarter pitches are now part of maker culture, but when do you hear back from the other side?

How did an Arduino hack turn into £50k in pre-orders? How do you get an assembly line going if all you have is a laptop? Four production runs and a retail partnership later,
what were the final accounts?

Join Toby Harris as he talks product and dissects a successful run of a maker business.

I’m going to talk about how four lines of code led to a successful run of a maker business.
You get to see what something really took, and how much I really made. As a modest
success, it’s a final reckoning I can share with some pride, and having moved on, some
completeness.

To set this up, you should know I am the kind of person who has made their own a test-
card. Vanity, sure. But also because…

…I have spent a lot of time lining up projectors in art galleries…

…and doing all sorts of audio-visual performance.
That’s me on the right, as part of D-Fuse. I’m using one laptop to output the imagery
you’re seeing through three projectors. And I’m jamming with the person next to me, who
has his own laptop making his own imagery. How do we jam? We’ve got a crossfader
between us.
And having a crossfader between laptops isn’t just useful for video-art. People are so
scared of changing Powerpoint presentations, they insist on loading everyone’s decks
onto one computer. Or it’s just a kerfuffle, and once the thing is actually connected, you
see some picture of their dog under a desktop full of files and poof! there goes any
credibility they might have had.

Context established, onto the first section. The thing as a personal project.

Problem was, there wasn’t a crossfader for laptops. There had been a crossfader for what
we used before laptops. This mixed analogue video, e.g. the yellow phono socket on the
back of your VHS deck or camcorder. We all expected a new version for the new world of
laptops, high-resolutions, and digital signals where a single pixel line remained a single
pixel line, and not a jittery fuzz. But it didn’t happen, and the years passed.
It got to the point that the collective I was part of simply had to have something that
worked, damn the cost or damn it having to be a rack-mount thing that would be a pain to
fly with. I found a company that had both the flexible spec we needed, and were among
the cheaper things out there. But the spec wasn’t quite high enough, so I wrote them an
email. And got a very interesting one in return…

Well, look at what they had just released. Laptop sized! Twice the processing bandwidth of
those rack-mount units!
And critically, one of these two has that “3x2 crosspoint” which in real terms means not
only can you fade each input independently, but if a laptop’s cable gets yanked out, the
output won’t glitch.

This video processor was not only better spec’d and handily sized, it was cheap! An order
of magnitude less.

That catch was that this video processor was designed for installation; i.e. use the
software to configure it once, stick it behind the screen, and then it never be touched. We
needed hands-on use, like a DJ would. We needed a crossfader.

We also needed to turn up, turn it on, and know when we fade ourselves up, that’s what’s
going to happen on the screen. DJs are used to this. We wanted to get used to it too:
dedicated hardware that ‘just worked’.

You’ve seen that the installer uses some piece of Windows software to configure the box.
Now that software must remote control the video processor box somehow, right?
Happy days: look, the manual details all the remote control commands it will respond to.

At which point, you have a project: engineer a cross-fader to whatever that manual says

To hook up a crossfader, read its position, translate it into that mumbo-jumbo, and send it
down the cable, I needed an Arduino. This is an open-source controller board used in all
these sorts of DIY projects. In this case I’m using an Arduino clone that has been tweaked
to have RS232 instead of USB, which is the socket and signal type that the video
processor has on the back. And this will be relevant shortly: it’s a Fundamental Logic
MaxSerial Freeduino.
Back to the narrative: I learnt to solder.

And once the Arduino was assembled, I figured out this code and flashed it on. It’s not far
from being copied and pasted from the manual.

It worked: I could crossfade between laptops!

But it wasn’t dedicated hardware that ‘just worked’ yet. And that’s because digital video is
complicated. Before, having that yellow phono socket meant you had a video signal, and
that was that. Now, what’s going through a DVI or HDMI cable could be any number of
resolutions, frame-rates and so on.
This complexity was handled in the Windows remote control software, but I’m not an
installation engineer. But if the input resolution isn’t matched with the output resolution
which isn’t matched with the video processor alone, by displaying a menu system as part
of its video output. But if you can’t see the video output, that’s no good. And as anybody
who has tried to coax an image out of a projector or display knows, that’s often the
problem you’re trying to fix. Catch-22, or in the case of a turning up to do a live
performance: no show.

For video art, there’s more to this. We go beyond the standard computer display and
broadcast TV sizes, using boxes that split single video signals into multiple outputs.

Again, this new video processor comes up trumps: you can program it with custom
resolutions! So if we can remote-control this, the problem of mis-matched and exotic
resolutions is solved.

Making that remote-controlling so with some more reading of the manual and Arduino
code.

It works! I made a HD video mixer. And while it has fewer buttons than a broadcast style
HD mixer (and definitely no buttons that light up), with those multi-screen settings, it
actually does more.

Here we are in Sao Paulo. The artist collective D-Fuse doing a show we could only have
done with the… D-Fuser. I made it for us, for these kinds of gigs. And that’s how it got its
name.
And… perhaps just as important as the mixing, is the ability to sound-check hours before
the gig, then uplug the laptops knowing the signal to the projectors isn’t broken. Then
come on stage, plug-in, fade-up, and boom!

I introduced this talk with the idea of “four lines of code”. Those four lines got me a
crossfading HD video mixer. They proved the concept. We saw that grow into a bit more,
to handle resolutions. In all, something that happily worked for me took 100 lines of code.
As you can see on this graph, that’s going to grow. We can use this graph as some way of
quantifying how much work has gone into it as we go along.

And here’s an example of what that work looks like. For the proof-of-concept, it’s
constantly sending current position of the crossfader. But it sends it in a kind of ‘debug’
mode, which meant I could just copy and paste some characters from the manual. So I
didn’t have to know about checksums, or bytes or all these low-level code things. Which is
to say, I could fake the coding. And here’s the canonical example. After sending the fade
position, I just tell the controller to sleep for a tenth of a second, at which point the
processor I’m controlling will have given-up on trying to talk back to me, and is sitting
there ready as if nothing had happened. So it’s simple, but it limits me to updating the
crossfade every tenth of a second.

But if you can listen to what it says back, and know it said “gotcha, ready for the next
command”, you can send the next fade position straight away. And doing that, means the
cross-fading turns butter smooth. It lands on the other side of the cinema threshold, where
a series of still images, fast enough, appear as fluid motion.

The peers of mine who saw its first outings, all wanted one. So now let’s talk about turning
that one-off into a product.

Let’s get it out there. Back from Brazil, I took a photo and drew this up. I wrote “limited
production run”, guessed a price, and made a project page on my website with an
‘expression of interest’ sign-up. Plus some “I’m figuring this out as I go along, that price
isn’t fixed, this is a community project” disclaimers.

I put it out there. I was on twitter. I used it at more festivals. More peers saw it.
I’m lucky, there was pent-up demand. We were no longer served by “Big AV”, who hadn’t
updated the mixers we used to use before the world of HD. For that matter we were
unserved by the PC industry. I could imagine for instance a meeting-room A/B dongle for
switching powerpoint presentations. (Now you’d just Airplay or Chromecast, how times
have changed).

I had written “limited production run” not knowing exactly what that would entail, but I
figured I had a handle on it. I’d done this once already, it would be basically the same
deal: a MaxSerial Arduino-clone in a box. Just a better box, with a few more buttons.

I was prepared to sit there and solder a few dozen boards together. But there is a design-
for-manufacture twist here. I needed the PCB tweaked – keep the Arduino-y bits where
they are but extend the board around them out to the grooves in the case and hold the
slider and buttons. I thought the MaxSerial people might do me a run of these, it’s open
source and they’ve got the design all set up… but no reply. Time passes.

There were more things that didn’t work out, including a collaborator who came on board
seeing the need and having all the electronics hardware skills. But rather than going into
that, here’s a metaphor for what amounted to a few years of dead-ends.
The person doing the visuals at an Aphex Twin gig had – you can imagine – some crazy
setup and my mixer would really help. As it was all a bit crazy, and hell I wanted to go to
the gig, I supported the mixer myself, tweaking it’s features so it did just what the visuals
person wanted.
Except that when he came to fade up, it didn’t. Which was bad, and confusing as I had
performed my last firmware update earlier and it had ‘soundchecked’ perfectly. In the
ensuing chaos I figured the microcontroller chip had actually vibrated out of its socket with
the bass from the warm-up acts, and was now lost on the floor. Soon enough I found it
and pushed it back in, but it was too late. If nothing else, trust was blown.
It’s a fun story – in hindsight – but it also told me that I, myself, needed a real product, not
a prototype. Chips don’t vibrate out of soldered, QA-assured, boards. And even if they did,
the chip would have stayed inside the box, because it be a production box, rather than
something with missing end-pieces “to-do next time I’m near a laser cutter”.

It’s now the beginning of 2012. The debut at the gig in Brazil was in 2009. I happen to be
doing a PhD, where a new lecturer says to me in conversation: “You can do the
electronics yourself. Here’s the first thing you need to know. Come back when…”. He was
like a horse whisperer. Tells you the key word. “0603”.

Now I’m going to attempt the same, of a sorts. Here’s a layout of that Arduino-clone PCB
in the box I’d chosen.

In failure you learn, and one thing that came out of the collaboration with the electronic
engineer partner was to abandon Arduino. And he’d pointed me to a promising alternative:
mbed. That controller had everything we had thought of pretty much on-board, and was a
neat, compact unit.
And just to set something up, note the connector pins pointing down are SQUARE PEGS.

And that’s what made this possible in my mind. I could buy an already assembled ‘brain’,
and then plug it into a much simpler board, that in effect just ran wires from the pins to the
buttons.
Contrast with previously, when we were taking the Arduino PCB design and extending that
board, i.e. our board had the innards of the Arduino on it too. Way more complicated, a
design I certainly didn’t understand. And then, just by copying and pasting the MaxSerial
PCB layout it went from something that demonstrably worked (that MaxSerial board I
soldered at the beginning) to something that always seemed to have something not-quite-
right. I’m going to come back to this later: how important (and fragile) a verified design is.

And, really, it’s not so hard. You don’t need to understand how it really works, it can be a
bit like lego.
Here’s that mbed unit, with its pins, laid out in a PCB design tool. How did I know which
pin to wire up those buttons etc. to? They’re labelled in this schematic of the mbed that
you copy and paste in.

Here are the first bits we need to wire up to it. Simple functional units, again pretty much
copied and pasted in. Power in, top left. Bottom left, the chip you need to convert and
protect the weedy, delicate microcontroller serial pins.

To wire things up, you just give them the same name. I show all this, because if you can
code [make vector art, etc. appropriate to venue], you can definitely do this too. You can
do electronics.

And now we flip from the schematic view to the physical PCB layout. The yellow lines are
connections made by naming the pins the same.
No controls are wired in yet, but this is all that is needed for it to be alive: the mbed as
brains, RS232 out from the mbed via a conversion chip, and power to it all.

Here’s a first go at actual layout. As well as the first-go layout of the components, I’ve got
excited and hooked up an ethernet socket to the mbed’s ethernet socket pins.

And now I’ve transformed all those yellow connections into actual PCB traces laid on the
board – ie. the wires. This is super absorbing. You can get pretty OCD about it.

Here’s the final design as I had it. Ready to be sent off. It looks complicated, but the
process to get here wasn’t. In fact, I found it much easier doing this on a computer, in a
PCB design tool, than the few times I’ve tried to do electronics on a work bench with the
mess of breadboards and wires. It allows a clarity to parse the basis of the design, and a
forgiving space within which to iterate the details of the design.

Here’s my theme of this section: designing on a computer makes considered iteration
possible. Here, with the precision and repeatability of a laser-cutters, you can work up the
panels that are going to have the sockets, buttons and whatnot in them. If you don’t get it
right first time, you can nudge things around till it all fits, knowing the actual piece is going
to reflect that precise change and not some cack-handed mistake you introduce if making
it on a bench yourself.

You pay to get PCBs made, and they arrive back in the post. If you’re not in a hurry, it can
be cheap. Assembling PCBS, i.e. soldering on the components? With the right kit and a
bit of mentoring, this is surprisingly doable (tip: find a Makerspace). But, that’s not
necessary: outsource if you have any worries. It will cost, but it will be an accurate
reflection of your design, and as with the laser-cutter’s accuracy, that’s what matters here.
The goal here is to iterate the design to the point of function and fit. You’re making a
prototype, but that’s not what will carry forward. It’s a design you’re confident to
manufacture.

Here’s that professionally assembled PCB, powered up. With the bits and bobs on the
PCB design copy-and-pasted from the screen’s manual, it has powered on and lit up.
Initially showing static, now I’m in the process of writing software to control it. My low-level
code is almost there.
Like that first example of code, where the single-line dumb “delay(100)” turned to a load of
low-level code, this took some learning to do. But I had the confidence of having made
that kind of leap once already, and designing and coding on your computer gives you the
time and space to get things right. And while there’s some voodoo in the code, it was all
incremental steps. An OLED library from scratch? Doable!

Content



Here’s the punchline. The PCB functioned, but it all didn’t quite fit in the case. Most
embarrassingly, the square pegs of the mbed board didn’t fit in the round holes of the
socket I’d spec’d.

Some tweaks and added functionality later, here’s the PCB final candidate

Now everything fits neatly into the case, and it works. And no more square pegs into
round holes: the mbed is soldered direct to the board.

Here’s some of that extra functionality: DMX control, so it can talk to lighting desks. I’m
going to come back to this added feature later.

Of course the physical controller, with it’s RS232 socket, crossfader and so on, is only half
the story. So here we return to four lines of code that proved the concept, and a hundred
lines of code that got crossfading and resolution setting working for me.
By this point, I had a few years of battle-tested experience using the video processor, and
it wasn’t pretty. The box worked, that wasn’t in doubt. But the user experience was bad.
You often needed to go deep into its arcane menu system. It was all too easy to simply
have no output. Hence knowing I’d need some kind of menu system to expose the
functionality in a sane way, and likely some of my troubleshooting experience rolled into
how my controller behaved.
So how many lines of code now? It really is a good proxy for the work done. Watch…

Here are the four lines or so that proved the concept.

Here are the 100 lines or so that got it working for me. A third on the application code, and
two-thirds on the library that handles the processor (e.g. provides the application with a
sane API, and manages the low-level detail of actually communicating with the processor
over RS232).

30 lines of program, 60 lines of library to handle the processor

And now this is where we are up to. Around 30 lines of application code has grown to 700
lines.

The library to handle the processor has grown

There’s now a new library to run a menu system

And a tweak to the platform supplied rotary encoder class to make the menu knob work
the way i needed it to

A new library to drive the OLED display. It’s from-scratch, so I get to figure out typography
and so on. And hey, I care about typography. And like seeing my logo in as many new
mediums as i can.

All together, that’s ~2000 lines of code in total.

On the graph, see where the question mark was?

Well, it’s above there. The reality is greater still: from 4 to 100 to 2000!
And to foreshadow where we’ll be going later, note the scale here…

At this point in this talk, we’ve seen this project-to-product as a PCB drawing with some
prototyping bits and bobs, and a graph that gives an idea of the work involved as this tool
gets ‘more real’. As it goes from a personal project to a product people might believe in
more and more.
The aim is not just to make potential customers feel that they could be buying a real thing,
but that the thing will actually solve problems they have. That it is desirable, has value to
them.
So what’s the value proposition?
To elaborate the slide –
Hands-on controls: so you can mix. Or even if this was just for cross-fading powerpoint,
it’s a good interface: you instantly know which laptop is live.
Menu input and output: because you can’t use the built-in one on the video processor.
Even if it was user-friendly enough, half the time you can’t even get to it, and your video
processor is a brick. So we provide one.
Processor Firmware: so it works out-of-the-box with our multi-screen resolutions.
Controller Firmware: so the whole thing ‘just works’. At this point, 100 lines made it
workable, but 2000 lines is making it ‘just work’.

Perhaps those four points looked obvious. But very different products could still be
imagined that tick those four points. And, it will surprise nobody if I say the devil is in the
detail. So, neatly, there’s a product we can work though as contrast. Remember this mixer,
that everybody used and loved but belonged to the old world of fuzzy analogue video?

Well look! This is pretty much what appears to be the same mixer with – oh what’s that
stuck in the back – the same video processor I found. This is a very understandable thing
to do: take what everybody loved and update the innards to the current state of the art.

And it appears to tick those four value-providing aspects. So let’s go though them.
It has the hands-on controls. Lots of them! Extra tick for that.
It has a menu system to expose the resolution-matching functionality of the processor.
They have done the work to configure the processor for the exotic, multi-screen,
resolutions that video artists love.
But, however, a demerit for “just works”…

What the designers of this mixer didn’t realise is that this particular video processor works
fine when set up once in a permanent installation. But for whatever reason when touring
it’s often misconfigured and, in short, you ain’t got a mixer no more. Not having output is a
dealbreaker. That’s the core problem to be solved.
Perhaps they had little experience with the video processor. Perhaps they had lots of
experience, but were lucky. Perhaps they had lots of experience, but also a preternatural
ability to troubleshoot that simply never made this an issue worthy of consideration – and
given they had the technical competence to attempt making a mixer out of it, that’s entirely
conceivable. Perhaps they simply trusted the spec sheet, lured by the promise of that old
interface mapping directly onto this new technology.
It’s unknowable, but I spend some time on why because these ‘perhapses’ are all
generalisable, and I’m sure these aren’t the first people to fall foul of this kind of thing.

Again, I’m on the outside looking in on the development of this mixer. But let’s say they did
at some point realise that their product was being undermined by the fragility of the
processor’s setup. What could they do about it?
Like the D-Fuser, they had custom code managing the processor. They could develop
this, manage the processor better, and to some extent, manage the user’s use of it. Now
they’re constrained by their user-interface paradigm, the screens and knobs and whatnot,
but ultimately this is fixable. It’s software, and generally speaking, you can update it.
Smoothing-over the user experience of the video processor itself is unlikely to cover every
eventuality, though. To some degree, the processor’s menu system is arcane because of
its need to cover every last parameter possible in converting and combining digital video
signals. To smooth-over, to expose functionality, you edit. You optimise for common cases.
Which leaves the last resort: something isn’t right, and you need direct access to the
innards of the video processor’s workings. It has happened to me, and the design here
hard-fails: the video processor’s controls, on the front of the processor, are now
unaccessible. They’re inside this mixer. It’s swallowed them.

Quote –
Setup
This is where the D-Fuser really shines. It’s very clear that Toby spent quite a few nights
with his baby, coming across every problem and thinking of a good way to fix it. Setup is
very intuitive, and once you get the hang of the onboard menu screen, you can setup
everything you want without reading the manual. Which is good, because none is
included. Extra info can be found online however.
The onboard menu itself is very well designed. It gives direct feedback on the important
bits, and has an easy to navigate menu structure for the harder bits.
The TV-One does not have a preview output, which can result in it being a bit of a black
box. The D-Fuser solves this issue by sending a Spark logo as long as no inputs are
found. This is also reflected in the onboard menu, where the word Logo is displayed. This
is actually very useful, because you can be sure that at first start up, a logo is always
shown on the output. If this is not the case, you know the problem lies somewhere in the
signal flow behind the D-Fuser.
The moment an input is detected, it changes it’s status to Live. When said input is lost, the
output is frozen. This makes it a very useful piece of kit for setting up before showtime.
Once the signal is correctly detected and set up, you can take your laptop back to the
hotel while leaving the D-Fuser running as an active input. When the time comes to plug
back in, everything is handled smoothly without loss of signal.

And there is something further. That idea of mapping a loved, old, interface onto the new
technology? Well… here we need to go from a double-tick to a…

…to a cross. This interface is a cheque it can’t cash. Remember the work it took to go
from a stuttery crossfade to the butter smooth one? Turns out, for realtime control,
sending the fade position commands fast enough for a perceptably-smooth result is
enough to saturate the bandwidth you have. You just can’t shove the instructions down the
serial cable fast enough for all these extra controls.

Also. We’ve established that hands-on control is an essential feature, but how much is
open question. To video artists, the promise of all those buttons is instrumentalism. And in
the era of analogue video, the mixer was largely the only game in town. You’d see VJs
flipping the crossfader to the beat, tweaking the effect knobs with the music. But this is not
that era. Laptops had long shown a more purposeful and expressive path than a crude
mixer and its fixed palette of effects; if a mixer could be made for the era of laptops, it
would fit more as a means of tag-teaming between two people and their personal laptops
– or as a backup for when the laptop crashes. That means the mixer having enough
hands-on control to e.g. get you out of trouble, but there is no need for hands-on
instrumentalism at the mixer. The instrumentalism happens at the laptop, as a computer
peripheral.
So I’d argue this is a mis-conceived interface. If it served the e.g. ‘tag team’ basics, and
then had extras, in theory that wouldn’t be a loss. But those buttons come at a cost.
They’re good buttons, designed for tactile response, light up, and so on. And good buttons
are expensive. You could buy two D-Fusers for the price of one of these.

In summary, it looked to the developers of that mixer – and to their their pre-order
customers – like they were hitting all the same needs as the D-Fuser: hands-on (but
x100!), provides a menu to setup the processor, adds multi-screen output settings to the
processor. And what the people who made that mixer did is amazing. Just look at the
thing!
I show that alternative TV One 1T-C2-750 based mixer here not as a pissing contest, but
as a real, people-burnt, money-likely-lost illustration that this slide isn’t the simple tick-box
exercise it may look like. The value proposition of both of these mixers is exposing the
functionality of this particular video processor. But how you expose that functionality can
lead to very different outcomes.
The punchline here is the review I’ve quoted was written by one of the developers of that
mixer. For which, I think a moment of appreciation.
https://tobyz.net/diary/2013/08/spark-d-fuser-resolume-review

The title slide is actually a lie. You don’t go straight from project to product. A prototype is
a complete stage unto itself…

[web skip]

[web skip]

[web skip]

How do you make the idea of an affordable crossfader-for-laptops believable?
One the one hand, it’s already real. I’ve already shown a photo of a box with a spark
branded PCB and a fancy OLED screen looking useful. But more believable is a
demonstration video. Showing an end-to-end test.

More believable still, is a demonstration video paired with a diagram. There’s something
convincing about a competent diagram. And specs. Detail.

But I’ve got ahead of myself. Let’s step through what we have.

The prototype got me a convincing video, but remember I’m not shipping the prototype – I
only have one of those, and it’s got a chip hanging off the board on fly-leads because I got
a detail wrong. But that’s the purpose of the prototype: to get to the point when the design
is good. That detail was easy to correct, and here is it corrected.

Hand-in-hand with the PCB design that fits in a case goes a drawing to specify where the
bits stick out through that case

And what those initial four lines of code have become: the firmware.

Critically, that controller firmware isn’t just some bare-bones enabler, it’s a lot of hard-won
experience encoding behaviour into the processor to make it “just work” outside of it’s
traditional environment of one-off install. So there’s a lot of custom code in the controller,
and a few tweaks to the firmware of the processor, like pre-loading in the multi-screen
resolutions. So I’ve updated that list to say “firmware that makes the package just work”.

More accurately still, what makes the package “just work” is codified behaviour – that’s the
value brought by the firmware.

So what is the price? How does this even work? At this point, my thinking is less business,
and more simple facilitation: how to get these things out to my peers, in our niche. I’m
doing this for the community. (Perhaps more honestly, after those stalled years, I’m doing
this for my reputation.)
The way I saw this, people could order and pay to get their slot in the production run.
Whatever I do I’m exposed in some way – taking peoples money and not delivering would
be bad – but this didn’t require me sinking in money I didn’t have, and seemed reasonable
from the outside.
The kickstarter model is now well established, and it’s a good one. It takes the legal sting
out of a pre-order model, and respects the reality that to make things, there are break-
even quantities. For instance, while I could buy the cases individually, to get those cases
modified with the openings and print I needed, the minimum order quantity was 25. Or if I
reached 100, bulk pricing really started to kick in.
Now as it happened, my market was largely my peers, and they had said they were ready
to put down money. So in this particular case the value that Kickstarter provides was
limited, and of course they take their cut. So I decided to run this myself. It was a
reasoned decision; still I was probably lucky. Your mileage may vary.

So, to figure the price, knowing my prototype, I approached suppliers. I got quotes for the
manufacture and logistics of doing this.
It’s quite scary thinking this through: say I use my house as the final assembly point. What
if I got burgled? Or there was a fire…?
I had a definite break when the supplier who I’d ended up going with for the prototype
PCB assembly offered the use of their industrial unit. Although, now I’m trusting someone
else, and I wouldn’t have a key. But so it goes.

Having stepped through what we have, this is the point we get back to that information
website. Because an information website needs a price. And, quotes in hand, you can
settle on a number. We’ll come back to this.

And with the pre-order details all laid out publicly, it was time to commit behind the scenes.
So I registered a limited company; I didn’t want this exploding bankrupting me in turn.

I signed-up to ‘Big Cartel – Easy online stores for artists & makers’, and readied my online
store.



And, most importantly that sign-up on my website has been live all this time. The “*spark
d-fuser: expression of interest” form had gone from 163 entries to 430 entries over the two
and a bit years while the project lost its way.
I think we all instinctively get the idea of a sales funnel. I had to make the idea of an
affordable crossfader for laptops increasingly believable – part marketing, part doing the
work of a project then prototype – nudging people from first becoming aware of this, to be
interested, then to evaluate it, then to actually purchase it.
So what’s my conversion rate going to be here?

With some news items perhaps I could reach beyond that list of 430…

From 430 expressions of interest, to 80 orders.
To be honest, I was a bit disappointed.
Partly because there was a price break at 100 units.
But: 50k! For a video on the internet, not to be sneezed at!
And, look, I was committed to making a production run happen, my reputation had
become this
But risks, there were minimum order numbers, if it had been less than 30 controllers I’d
have been in trouble

All that sales stuff can go away. It’s now all about delivery.

Although to do that, you’ll actually need the money. Which “may be subject to review”. And
was. And it turned out PayPal doesn’t like you taking money for goods you don’t have at
time of purchase. Thankfully, after few phone calls back and forth, this was straightened
out. I can’t speak for them, but there was lots of evidence on the internet this was all in
good faith.

So now, phew, that money is in the bank.

And now the money is in the bank, you can start buying stuff.

And you realise the prototype is still actually far from a product. It needs a case print.

The video processor, once flashed with my tweaks, should get a sticker to make it fit the
package.

And you’ll need a box to put it all in. Boxes are easily sourced online. But I wanted some
wow, and so here is custom packing tape to wrap around it.

Turns out, the minimum order for custom tape is quite high. You should have seen me
moving house recently…

Inside that box, you need to protect and present the product. Knowing I had access to a
laser cutter, this is something I figured I could do myself. So after much trial and error, I
ordered a load of cardboard sheets, and here’s my origami design.

Note: this was a bad idea. Laser cut edges and cut-outs? Perfect. Laser part-cut folds?
Didn’t hold up for everybody.

Test rigs and process documents for the factory.
Spot the mistake. QC checked is neither here nor there. Did it pass?

Let’s rearrange where we were before adding these in…

…product on top, business below.

Now with the drawings needed post-prototype.

Of course, it’s not going to be as neat as a purchase order for controller and processor.
The controller, which effectively a single contractor is making, still needs lots of purchase
orders so I can get various bits to them. And all this takes a lot of emailing.

A lot of emailing. These are all my updates to my customers, as that four week production
run grew to five, and ultimately nine.
There could be a version of this talk where I discuss each of these emails in depth =]
https://tobyz.net/diary/2012/12/dvi-mixer-a-production-runs-worth-of-updates

e.g. What seemed like a little bit of expediency with what I had on the prototype turned
into real work when I found there really was no off-the-shelf part I can buy and I needed a
hundred of them.

e.g. this far into the product, way past the demo video, I finally admitted to myself it wasn’t
crossfading quite right when the output was partially faded-to-black. So after some head-
scratching, my conceptually straightforward and simple to code algorithm goes from this…

…to this.
This example is also covering for a much bigger crime. The software that ran the demo
video had a dealbreaker mixer-freezing bug in it.

Having done all the work of the production run, and coded through a great many user-
experience desirables and firmware fixes, where are we on our graph of lines-of-code-as-
a-proxy-for-the-work-done-overall? That question mark, extrapolating ‘Worked for me’ to
‘Worked for a video’, is at about 3500.

Answer: just over 5000.

Five thousand lines of code to transform a four lines of proof of concept into something
that truly ‘Just works’.

Finally, with all those production run things done, you get to hold in your hand…

…what you have been talking about – and talking up - for all this time. It’s a profound
moment.
And doesn’t it look nice! I got what I consider here to be a slick, custom look out of stock
parts. You could too.

Better than the inert product in the box, is it powered up. Remember the Aphex Twin
anecdote which made me realise the value of having production hardware for myself?
Only now do I have it. Robust hardware and much-finessed firmware.

And this photo shows something more. My reward wasn’t just a production-grade
controller. My hand in this photo is tweaking the ‘fade curve’ between ‘will dull down’
blending and ‘can burn out’ adding. Combined with the crossfader, this provides powerful
hands-on compositing. Behind this UI was a commission. Spec’d by me, paid for through
the orders, and developed and tested by TV One as custom firmware for their processor.
This created something I could not have achieved as a personal project.
When I compared how the D-Fuser met the value proposition of a mixer based on this
video processor, the comparison was about a making a minimum viable product, one with
no dealbreakers. But this shows how, despite the limited user interface of my controller
and knowing the limited communication bandwidth with the processor, it was possible to
create new functionality that wasn’t an attempt to re-appropriate the past. I achieved that
‘instrumentalism’ that live performers crave, D-Fuse’s live performances were much the
better for it, and it was a feature unique to the D-Fuser.

I mentioned the supplier who did those initial prototype PCB assemblies and then offered
the use of an industrial unit to box up and send everything out? That supplier has a name,
and I should name him. Bob Carter and his industrial unit became in many ways the
partner to Toby-and-his-laptop.
Also note Bob is not in China. This all happened in the south of England, including for
what it’s worth TV One. There were many benefits to being able to pack a suitcase full of
parts and get on the train to Bob and his friends-in-electronic-factories. Here I’ve just done
one of those runs, and lo: packing up…
(Bob in 2019: http://www.thecuttingedgeconsultancyltd.co.uk/)

…and sending out.

It could have ended here, and I would have been completely satisfied. Emails came in of
*spark boxes arriving on doorsteps all over. Peru sticks in the mind, for some reason.
Emails with delight, and a few firmware tweaks down the road, a sentiment that I’d nailed
it. Super gratifying, needless to say.
But more profoundly, visualising that box on a doorstep, I knew that I knew every detail.
There’s the idea of refining detail, that you can always ‘zoom in’. I felt like a had a story to
tell, or a design decision to set out, nomatter where you looked, or how deep you dug.
Incidentally, this sun-blissed photo is from Sean in Australia, and Sean’s was the first
order of them all. Thanks Sean!
http://www.skynoise.net/2012/08/30/crossfading-laptops-with-the-spark-d-fuser/

But it didn’t end there…

Having finished the production run, and sent them out to the people who had put their
money up-front, what do we have?
The money! That’s the obvious thing. But I’d say not. While I came out ahead, five
thousand pounds or ~10% is really in the ballpark of the kind of contingency you’d want if
you’re trying to do any manufacturing or shipping like this. There’s all sorts of things that
could happen, or you might have overlooked. So I’m happy to still have it at the end, less
tax, but really my profit margin is too low here. And while I didn’t do it for the money, it
doesn’t represent a living wage for the hours I’ve put in.

And the money is in a way a red-herring. With the kind of orders I got that first time
around, I never could have earnt enough to really fund a paradigm shift in the business
myself.
So what is important? The top row now represents a verified design. In the bottom row,
my contacts that made the first run possible. Alan, my sales contact at TV One, and Bob,
with his industrial unit and friends in electronics factories.
And, what gives this a future: 100 sign-ups on a list I started when I closed the pre-order
sales period. I had people saying “I only found out about it now”, so I collated their contact
info. By the time we had shipped all the pre-orders, it was up to a 100 people.

The prototype was how I got to a design I could have the confidence to commit to a
production run. But now on the other side of that production run, that design is a verified
design. The factory now knows precisely how to make 50 or a 100 controller units of mine;
not only do they have the procedures I sent them, they’ve further detailed them. I know
that, at least a few months in, the units that have come out of that process haven’t blown
up, haven’t exhibited any kind of systematic defect, and have refined firmware based on
the greatly expanded pool of people’s experience with it.
Put a verified design together with people who can execute on it, lure them with a market
wanting more, and you have a business prospect.

One reason why this isn’t as commonplace as might be, is that a verified design is a
surprisingly fragile thing.
Recall the wilderness years, when an electronics engineer partner was effectively copy-
and-pasting in an Arduino schematic to our own PCB? In that copy-and-paste operation,
that known-good design developed some subtle issues that more or less lost us two
years.
Or take my firmware. I added one extra menu item, and introduced a condition where the
whole controller would freeze. Didn’t even notice straight away, and couldn’t reconcile the
vanilla changes I’d made to this drastic outcome. Eventually I figured I was witnessing a
stack-heap collision. I had no idea I had got my perfectly performing firmware to the point
of being one trivial change away from the limits of the hardware.
Final example is that extra functionality I added to the board, where you could switch the
RJ45 socket between an Ethernet path and a DMX path. That DMX functionality met the
spec. I used an up-market part to ensure it was electrically isolated, it did the works. It
worked on my test bench. But… trying to use it in anger later, like a year later, I found
when engaged that part of the board overheated, and the output became erratic. This is
actually two lessons in feature-creep. First, don’t do it because it exposes you to failure.
Second, don’t do it because let alone not being essential, it might never actually be used: I
never got a complaint about this, so nobody must have used that feature in the end?

So, we have a promising prospect. How do we solve this?

Here we have the three parties involved. Me, TV One and BC Kitting.
Despite the intellectual property being mine, that verified design effectively belongs to the
Bob. Those documents are only meaningful in the context of the factory that knows how to
produce them. It’s only there that the verified design is fully de-risked. The assembly
procedure I made acts as their first draft of an internal document.
So that’s where we are so far.

In full, the problem looks something like this.
Seemed to me, this could even solve itself…

…but without me in the loop. Even if I was involved with customer relationships, the real
business is going on between the widget suppliers. And at that point, what leverage or
accountability do I have? I can’t see this working out if I’m relying on some legal
framework to ensure I get paid a license fee.

There was a way to align interests and make each party a stage in a chain. Two things
made this possible.



made this possible.
First, there was a piece of IP that was meaningful for production ‘in-house’ – literally, my
house.
The ability to commission a custom firmware from TV One for the video processor, was
my personal reward, and a concrete ‘IP’ advantage over any competitors (e.g. that other
video mixer). Or, in this case, my own partners. I could flash this firmware onto the generic
TV One processors, stick my nice sticker on, and then resell onto Bob who would pair with
the controllers he got made.
Second, is the call-off order. This would only work if I could get bulk pricing on the
processors, but I can’t risk buying 100 up-front. And that would be true even if I had the
capital, which I didn’t. Well, companies are people, and people can figure out if there’s a
way to make something work for all involved. The answer is a call-off order, in which you
split a larger bulk-buy into chunks. Obviously it isn’t quite as good for TV One to deal with
e.g. five orders of 20 rather than one of 100, but ultimately if that’s what stands between
100 orders and none, then that’s what to do. I ordered my first chunk with the capital I had,
and went back for more when Bob had sold those on. Which is not to say it was
frictionless between us, but we both understood each other’s constraints and made it
work.
So TV One got to sell lots of processors, I effectively extracted a license fee via
wholesaling processors, Bob earnt his cut by making the controllers and doing the retail
logistics. All while minimising outlay and risk: controllers were the cheaper part of the
package, so the economy gained through making them up-front in bulk was a risk Bob
was willing to take. The more expensive part of the package, the processors, were what
you wouldn’t want to risk having in stock and unsold or damaged; these could be ordered
in smaller quantities nearer on-demand.

Sod the numbers, or that years before the prototype here I had something that worked for
me (and none of my peers had anything like it!). Here is a box that I made, on the other
side of the world. Retail packages on doorsteps in Peru.
Anyway! Why did this work? A few theories.

Who would believe that ‘just a guy’ can make a hardware mixer? I mean this genuinely, it’s
not something I would necessarily believe as a punter on the internet with money in my
pocket.
(If you can engineer your own mixer from scratch, say your name is Sébastien
Bourdeauducq, you’ll soon find your skills are better used making bespoke signal
processing kit for particle accelerators etc. https://github.com/m-labs/mixxeo-soc ->
https://github.com/m-labs/artiq)
So where did the credibility come from? The website says this –

Extending an existing product anchors expectations. The video processor already had a
track record; it was an award winner. This thing – by extension my package – was going
to work.
That processor also has a price. It sits in a market where most kit is much more expensive
than it. The processor has a list price. These prices act to anchor what is ‘reasonable’ to
most people.
Both these aspects are reinforced by the diagram. There are two legit laptops, a legit
video processor, and the drawing of my controller looks of a piece with that.

To make the *spark d-fuser, we take an award winning video processor, partner it
with a custom controller designed to give you the hands on control and worry free
setup you need, and work both these over with custom firmware.

You’ve seen that this all started off as a hack, as a DIY project. That I was already in a
well-networked community of practitioners that presented a ready market. The route to
market that fit here, was “I’ll do for you what I did for me”, and, basically, that worked. It
got me past PayPal and warranty concerns. People got their controller, and between the
product and my support, were happy.
I wasn’t going to do it again, though. I’d already had the upside – a better mixer for me,
kudos – and continuing would expose me to more of the downside, for instance
supporting people’s existing TV One processors if I’d sold them the controller alone. My
take back then was for people to take on my designs and go make, fix or further extend
their own.
I’d always had the vision of selling the package, but the history and immediate market
meant this phase was oriented around the controller. I got to see two different outcomes.
Selling the controller-only had a high support burden, and seemed to attract people who
were determined to undercut the price I’d set somehow. Part of this was fair enough in a
way, e.g. my initial community idea of open source hardware would suit people finding a
cheap processor on Ebay, but then the support would be pooled and not mine alone. But
a lot of it was because some people thought that they could make the controller for less;
they were price anchored not by AV-kit but by DIY hacks.
Whereas people who bought the package had a good experience out of the box, and were
generally pre-dispositioned to value something that ‘just worked’.

If this was going to go beyond that first phase, it would have to be package only.
The customers were happier, with a lower support burden
Customers valued something that “just works”
That value can translate to charging a premium.
The package, consisting of more, commands a higher price.
The same margin on a higher price is more money back for you. A better margin on a
higher price is… much better. There simply wasn’t the profit in selling controllers-only to
make it a going concern. But there was in selling the package.
Plus, in selling the package, there was a way for both me and Bob to take our cut. Bob
earnt his margin by becoming a manufacturer of the controller. I earnt my margin by
becoming a wholesaler of the processor – which to this day seems ironic to me.

Lastly this worked because Bob and I quit while we were ahead. We actually were going
to quit after two retail production runs, but chanced a third.
We were lucky. The product pictured was announced the same month Bob and I sold our
last. Its the product that me and my peers had expected all those years ago, and whose
continued absence the D-Fuser had been a response.
So if the previous slide suggests it’s easier to make the business work if you make really
expensive things, notr the corollary. Having a bad batch or unsold shelf of cheapo trinkets
is going to be survivable. But if you’re making expensive things, you don’t want to get into
debt making them, and don’t get stuck with stock.

Why do I say ‘wield a computer’? I was one person and a laptop. This hasn’t been about
hands-on maker-skills. It was the computer that made everything possible. The time,
space and undo buttons of design software paired with internet how-to guides. User
experience as code, even for a hardware product.
Iterative design + outsourced manufacturing is a powerful combination I believe in, and
you should too. If you can wield a computer, you can do something like this.


